科研进展

  • 细胞器稳态与疾病研究组在肿瘤干细胞研究领域取得新进展

    细胞器稳态与疾病研究组在肿瘤干细胞研究领域取得新进展

    细胞器稳态与疾病研究组在Cancer Letters上发表研究论文,报道了一个新的结直肠肿瘤干细胞特异表达膜蛋白LGR4。LGR4与正常结肠干细胞标志物LGR5同属于GPCR家族蛋白,但LGR4与LGR5的功能并不完全一致。LGR4在肝转移的结直肠肿瘤干细胞中表达升高。微组织芯片(Tissue micro-array)免疫组织化学染色和Oncomine数据库比对发现,LGR4与肿瘤干细胞转移关键蛋白PrPc表达水平正相关,因此研究人员推测LGR4可能与肿瘤的发生和转移相关。为此,研究人员从临床结直肠CD44+PrPc+肿瘤干细胞中分选出LGR4+和LGR4-亚群,并将其移植到免疫缺陷小鼠盲肠肠壁或皮下,发现LGR4+CD44+PrPc+细胞亚群比LGR4-CD44+PrPc+亚群具有更高的致瘤能力和转移能力。这些结果表明LGR4作为一个新的肿瘤干细胞表面标志蛋白,可用于富集肿瘤干细胞。
          恶性肿瘤严重威胁人类健康和生命。越来越多的证据表明,肿瘤细胞具有高度异质性(Heterogeneity)和可塑性(Plasticity)。肿瘤中的一小群具有无限增殖潜能的、能重建肿瘤发生的细胞被称作肿瘤干细胞(Cancer stem cell),又称肿瘤起始细胞(Tumour initiating cell)。肿瘤干细胞通过自我更新和分化在肿瘤中维持相对稳定的比例。肿瘤干细胞通常处于相对静止的细胞周期,对放疗和化疗药物不敏感,在某些刺激因子作用下重新进入细胞周期从而快速增殖,导致肿瘤的耐药和复发。此外,肿瘤干细胞可通过上皮-间充质转化(Epithelial-to-mesenchymal transtion)和免疫逃逸转移到远端,造成肿瘤转移。肿瘤干细胞是肿瘤发生、耐药、复发和转移的根本因素,也是导致肿瘤治疗失败的重要原因。因此寻找肿瘤干细胞特异的表面标志蛋白,将为开发靶向肿瘤干细胞的药物提供新的靶点。
      近期,膜生物学国家重点实验室细胞器稳态与疾病研究组在Cancer Letters上发表研究论文LGR4 cooperates with PrPc to endow the stemness of colorectal cancer stem cells contributing to tumorigenesis and liver metastasis,报道了一个新的结直肠肿瘤干细胞特异表达膜蛋白LGR4。LGR4与正常结肠干细胞标志物LGR5同属于GPCR家族蛋白,但LGR4与LGR5的功能并不完全一致。LGR4在肝转移的结直肠肿瘤干细胞中表达升高。微组织芯片(Tissue micro-array)免疫组织化学染色和Oncomine数据库比对发现,LGR4与肿瘤干细胞转移关键蛋白PrPc表达水平正相关,因此研究人员推测LGR4可能与肿瘤的发生和转移相关。为此,研究人员从临床结直肠CD44+PrPc+肿瘤干细胞中分选出LGR4+和LGR4-亚群,并将其移植到免疫缺陷小鼠盲肠肠壁或皮下,发现LGR4+CD44+PrPc+细胞亚群比LGR4-CD44+PrPc+亚群具有更高的致瘤能力和转移能力。这些结果表明LGR4作为一个新的肿瘤干细胞表面标志蛋白,可用于富集肿瘤干细胞。
      肿瘤重建(Tumor reestablishment)是肿瘤干细胞最重要的特征。为确认LGR4+CD44+PrPc+细胞是真正的肿瘤干细胞,研究人员建立了肿瘤类器官(Tumor organoid)实验体系。单个LGR4+CD44+PrPc+细胞可在Matrigel中生长出类似原代肿瘤表型特征的肿瘤类器官,原位移植单个肿瘤类器官到免疫缺陷小鼠盲肠肠壁即可成瘤。此外,LGR4+肿瘤干细胞通过自我更新和分化,在类器官和异体移植肿瘤中维持一定的比例,并产生普通肿瘤细胞(Non cancer stem cell),表明LGR4对肿瘤干细胞的干性维持和分化起到重要作用。
      对肿瘤类器官进行基因编辑有助于探索单个基因对肿瘤干细胞的作用。敲低LGR4显著抑制肿瘤类器官的生长、肿瘤发生和转移,表明LGR4对于肿瘤干细胞干性维持的必要性。LGR4作为一个维持肿瘤干细胞干性的表面标志蛋白,可能是肿瘤干细胞治疗的潜在靶点,有望应用于临床抗肿瘤药物的开发。
      相关研究2022年5月在线发表在Cancer Letters期刊上。干细胞研究院细胞器稳态与疾病研究组杜蕾副研究员和南开大学生命科学学院陈佺教授为本文的共同通讯作者。中国科学院动物研究所博士研究生程琪,南开大学博士研究生郑浩,北京肿瘤医院李明副主任医师、王洪义副主任医师是本文的共同第一作者。该研究成果得到国家重点研发计划、国家自然科学基金等多个项目的支持。
      此外,细胞器稳态与疾病研究组近期受邀在Seminars in Cancer Biology期刊发表综述文章Targeting stemness of cancer stem cells to fight colorectal cancers,阐述靶向结直肠肿瘤干细胞应用于肿瘤治疗的可行性和研究现状。干细胞研究院细胞器稳态与疾病研究组杜蕾副研究员是本文的第一作者和共同通讯作者,南开大学生命科学学院陈佺教授是本文的共同通讯作者。
      图:靶向肿瘤干细胞的策略。靶向肿瘤干细胞特异表达膜蛋白的单克隆抗体、 抗体偶联药物和双特异性单克隆抗体,靶向肿瘤干细胞特异信号通路的小分子化合物,以及靶向干性相关分子的抗体和小RNA,将有望应用于肿瘤药物的开发。
      原文链接:
      https://www.sciencedirect.com/science/article/pii/S0304383522002099?via%3Dihub
      https://www.sciencedirect.com/science/article/pii/S1044579X21000419?via%3Dihub
      

    2022-06-15
  • 干细胞院建立蛋白工程化改造新方法和基于Cas12i的基因编辑新工具

    干细胞院建立蛋白工程化改造新方法和基于Cas12i的基因编辑新工具

    干细胞与再生医学研究院的研究团队建立了一种蛋白质工程化改造的新方法(Improving Editing Activity by Synergistic Engineering,简称MIDAS),并利用该方法获得了高活性的Cas12iMax以及高特异性的Cas12iHiFi等基因编辑新工具。
          CRISPR-Cas基因组编辑技术在基因治疗、农作物经济性状改良以及基础研究等领域都有多样化的应用,引领生物技术与应用的快速发展。自然界中广泛存在的天然CRISPR-Cas系统为新型基因编辑工具研发提供了丰富资源。然而,自然界微生物中发现的大多数Cas工具蛋白在哺乳动物细胞中的编辑效率很低,这大大限制了它们的应用,尤其是在生物医学方面的应用。
      干细胞与再生医学研究院的研究团队建立了一种蛋白质工程化改造的新方法(Improving Editing Activity by Synergistic Engineering,简称MIDAS),并利用该方法获得了高活性的Cas12iMax以及高特异性的Cas12iHiFi等基因编辑新工具。
      研究发现,通过MIDAS方法能够显著提高来自不同CRISPR家族的Cas核酸酶,例如Cas12i,Cas12b以及CasX等CRISPR系统的基因编辑效率。其中Cas12i由于其较小的蛋白质尺寸、简单的crRNA以及PAM,具有较好的应用潜力。通过MIDAS方法改造的Cas12i具有以下优势和特点:(1)Cas12iMax编辑效率非常高,相较于目前广泛使用CRISPR基因编辑工具(AsCas12a,BhCas12b v4,SpCas9,SaCas9以及SaCas9-KKH),展现了更高的平均基因编辑效率。(2)Cas12iMax具有非常广泛的基因组靶向范围,能够高效地识别NTNN,NNTN,NAAN以及NCAN等PAM序列,可识别PAM覆盖了70%的人基因组。(3)在Cas12iMax的基础上进一步改造获得了新的突变体Cas12iHiFi。Cas12iHiFi在全基因组范围内展现了的极高的特异性和极低的脱靶效应,同时保留Cas12iMax 90%的On-target基因编辑活性。
      MIDAS方法有望在多种CRISPR系统的基因编辑工具化改造中发挥作用,其中该研究所改造的新型Cas12i基因编辑工具在动物模型制备、作物育种、医学核酸检测、基因治疗等多项领域都具有广泛的应用前景。
      相关成果于2022年5月26日在国际学术期刊The Innovation 发表。该研究工作由中国科学院动物研究所和北京干细胞与再生医学研究院完成。干细胞院研究员周琪和李伟为论文的通讯作者;博士生陈阳灿、胡艳萍、王鑫阁为共同第一作者。该研究得到国家重点研发计划、国家自然科学基金、中国科学院战略性重点研究项目和中国科学院基础研究青年团队项目的资助。
      原文链接:https://www.cell.com/the-innovation/fulltext/S2666-6758(22)00060-1#relatedArticles
      图1. 开发新型蛋白质工程化改造的方法,获得高效基因组编辑工具Cas12i

    2022-05-30
  • 干细胞院合作揭示年轻血液促进干细胞及机体年轻化的分子机制

    干细胞院合作揭示年轻血液促进干细胞及机体年轻化的分子机制

    干细胞与再生医学研究院刘光慧研究组、曲静研究组,同中国科学院北京基因组研究所张维绮研究组合作,于Cell Stem Cell杂志在线发表题为“Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues”的研究论文。该研究通过构建年老小鼠和年轻小鼠的异体共生模型,绘制了系统水平的单细胞转录组图谱,并对骨髓、脾脏、外周血、脑、肝脏、骨骼肌和皮肤等7种组织器官进行了深入解析。研究发现,暴露于年轻血液可有效改善老年个体不同器官的组织微环境,并恢复多种成体干细胞的活力。其中,造血干(祖)细胞(HSPC)是对年轻血液尤为敏感的细胞类型之一,年轻的血液可以通过上调趋化因子CCL3的表达促进衰老HSPC的“年轻化”。该研究在单细胞分辨率揭示了异体共生引起的年老和年轻个体的细胞全景变化规律,揭示了年轻体内环境促进年老组织再生的关键介导因子,为发展衰老预警和干预的关键标志物和新型策略提供了重要的线索和思路。
      衰老是一种涉及全身多种组织器官系统性退化的过程,表现为渐进性机体再生能力减弱及功能衰退。异体共生(Heterochronic parabiosis)是通过外科手术连接年老和年轻小鼠的循环系统所构建的模型。该体系提供了一个独特的研究范式,可用于评价老化的机体受年轻血液影响后如何恢复活力,反之亦可用于研究年轻的组织和器官受衰老血液影响后加速退行的机制。迄今为止,年轻血液究竟靠何种力量使衰老个体重返“年轻态”的秘密还有待揭示。相关的重要科学问题包括:哪些衰老的器官、组织和细胞类型可以或者更容易被年轻血液“返老还童”?衰老干细胞的活力是否能被年轻血液所增强?能否发现介导年轻血液效应的“年轻因子”,并以此作为干预器官衰老的新型分子靶标?
      2022年5月24日,干细胞与再生医学研究院刘光慧研究组、曲静研究组,同中国科学院北京基因组研究所张维绮研究组合作,于Cell Stem Cell杂志在线发表题为“Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues”的研究论文。该研究通过构建年老小鼠和年轻小鼠的异体共生模型,绘制了系统水平的单细胞转录组图谱,并对骨髓、脾脏、外周血、脑、肝脏、骨骼肌和皮肤等7种组织器官进行了深入解析。研究发现,暴露于年轻血液可有效改善老年个体不同器官的组织微环境,并恢复多种成体干细胞的活力。其中,造血干(祖)细胞(HSPC)是对年轻血液尤为敏感的细胞类型之一,年轻的血液可以通过上调趋化因子CCL3的表达促进衰老HSPC的“年轻化”。该研究在单细胞分辨率揭示了异体共生引起的年老和年轻个体的细胞全景变化规律,揭示了年轻体内环境促进年老组织再生的关键介导因子,为发展衰老预警和干预的关键标志物和新型策略提供了重要的线索和思路。
      研究发现,暴露于年老个体的血液可以使年轻个体的不同器官、组织和细胞类型呈现加速衰老的特征。而年老个体受年轻血液影响则呈现出典型的“年轻化”改变,主要表现为衰老组织微环境的改善及相应干(祖)细胞的激活。被激活的干(祖)细胞群体包括皮肤的基底细胞和毛囊干细胞、骨骼肌的成纤维/脂肪祖细胞,以及定位于骨髓的HSPC。其中,衰老的HSPC对年轻血液的反应尤为敏感。以往的研究表明向淋系分化能力的减损是衰老HSPC的重要特征,该研究发现年轻血液暴露能上调老年个体HSPC中与淋系分化潜能相关的基因表达,并恢复骨髓中淋系细胞(如祖B细胞)的数量。结合差异基因表达、核心调控转录因子和细胞-细胞间通讯分析,研究团队发现了一系列以表观调控基因YY1以及细胞趋化因子CCL3为代表的HSPC衰老调控因子。结果显示,YY1的表达降低与HSPC老化密切相关,但其表达水平对年轻血液刺激缺乏足够响应性,而在衰老HSPC中被抑制的CCL3则可以被年轻血液诱导激活。进一步的小鼠移植实验发现,慢病毒介导的YY1过表达可有效增强年老的造血干(祖)细胞的重建能力;而基于CCL3过表达的“基因疗法”可显著提高年老造血干(祖)细胞向淋系分化的能力。
      由于异体共生实验中年轻与年老个体的循环系统相通,因此个体之间可能存在彼此细胞(尤其是免疫类细胞)在不同组织器官中的相互混合。为了解析这一复杂的细胞互通情况,研究人员用CD45.1和CD45.2两种不同基因型为标记来区分异体共生年老和年轻小鼠的细胞,不仅通过流式技术分析了不同基因型个体来源的造血免疫细胞,还进一步构建了CD45不同基因型小鼠异体共生的单细胞转录组图谱。研究结果显示,异体共生系统中外周血和脾脏细胞的互通程度较高,而骨髓HSPC却很低(年轻个体中的HSPC仅有不到1%来源于年老个体,年老个体中年轻来源的HSPC也少于5%)。这一结果提示,年轻血液对老年HSPC的“促年轻化作用”是一种受到年轻血液影响后的细胞内源性变化。除了造血免疫系统,老年个体的外周实体组织也会被年轻血液“年轻化”。值得一提的是,研究人员发现Gilz在成纤维细胞中的表达改变可能是系统衰老和年轻化的关键调控因素。
      综上所述,该研究以跨器官、多维度的形式系统解析了异体共生模型中年轻血液促使老年个体“年轻化”以及年老血液加速年轻个体“老化”的细胞分子变化规律,发现了多种调控体细胞及干细胞“年轻化”的关键因子,为建立衰老的新型预警和干预策略提供了丰富的数据资源,奠定了相关的理论基础。同时,该工作也为从系统生物学角度发现机体“年轻化因子”提供了新的研究范式,在科学应对老龄化方面具有潜在的应用价值。
      该项研究由中国科学院动物研究所、中国科学院北京基因组所、中国科学院干细胞与再生医学创新研究院、北京干细胞与再生医学研究院、首都医科大学宣武医院、清华大学、中国农业大学、北京协和医院等机构合作完成。中国科学院动物研究所刘光慧研究员、中国科学院北京基因组研究所张维绮研究员、和中国科学院动物研究所曲静研究员为共同通讯作者。中国科学院动物研究所、北京干细胞与再生医学研究院马帅“致一”研究员、首都医科大学宣武医院王思研究员、中国科学院动物研究所叶燕霞助理研究员、中国科学院北京基因组研究所任捷研究员以及清华大学陈瑞轻博士为并列第一作者。研究得到清华大学王建伟教授、首都医科大学宣武医院陈彪教授、中国科学院动物研究所宋默识研究员、中国农业大学于舒洋教授的合作及支持。该研究获得科技部、国家自然科学基金委、中国科学院和北京市科委等项目资助。
      原文链接:https://doi.org/10.1016/j.stem.2022.04.017
      图1. 年轻血液促进机体多组织年轻化的系统生物学研究

    2022-05-30
  • 干细胞院合作揭示染色质的“熵增”是人类干细胞衰老的驱动力

    干细胞院合作揭示染色质的“熵增”是人类干细胞衰老的驱动力

    干细胞与再生医学研究院刘光慧研究组、曲静研究组同中国科学院北京基因组研究所张维绮研究组合作,于Developmental Cell杂志在线发表题为“Large-Scale Chromatin Reorganization Reactivates Placenta-Specific Genes that Drive Cellular Aging”的研究论文。该研究通过深度解析人类干细胞衰老的表观基因组图谱,解码了衰老过程中不同层次表观基因组重塑的规律,发现染色质的“熵增”和胎盘相关基因的异常表达是细胞衰老的关键驱动力和分子标志物。该研究加深了人们对衰老程序化的认识,同时也为衰老的科学预警、衰老相关疾病的防治提供了潜在的评估策略和干预靶标。
          细胞衰老是机体衰老的重要标志和驱动因素,其中表观遗传改变是细胞衰老的重要特征之一。细胞衰老通常表现为细胞核形态异常、核纤层蛋白结构紊乱以及核周异染色质的缺失。然而,细胞衰老过程中表观基因组的重塑规律以及基因表达改变的调控机制尚不明确。通过系统地绘制细胞衰老过程中不同层次的表观遗传图谱、解析细胞衰老的表观基因组变化规律,有望发现对衰老敏感的表观基因组位点和调控衰老的关键基因,从而为解码细胞衰老的分子机制、揭示预警衰老的生物标志物以及衰老相关疾病的干预靶标提供新的线索。
      2022年5月24日,干细胞与再生医学研究院刘光慧研究组、曲静研究组同中国科学院北京基因组研究所张维绮研究组合作,于Developmental Cell杂志在线发表题为“Large-Scale Chromatin Reorganization Reactivates Placenta-Specific Genes that Drive Cellular Aging”的研究论文。该研究通过深度解析人类干细胞衰老的表观基因组图谱,解码了衰老过程中不同层次表观基因组重塑的规律,发现染色质的“熵增”和胎盘相关基因的异常表达是细胞衰老的关键驱动力和分子标志物。该研究加深了人们对衰老程序化的认识,同时也为衰老的科学预警、衰老相关疾病的防治提供了潜在的评估策略和干预靶标。
      该研究基于团队前期创建的人类干细胞衰老研究体系,综合运用DamID-seq、Hi-C、ChIP-seq(H3K9me3、H4K20me3、H3K27me3、H3K4me3、H3K36me3、H3K27ac、H3K4me1)、ATAC-seq和全基因组DNA甲基化测序(WGBS)等多维技术系统地绘制了人干细胞衰老过程中跨尺度、多层次、高分辨率的表观基因组图谱,以期探究干细胞在复制性衰老、病理性加速衰老过程中表观基因组的重塑规律。该研究深度解析了人间充质干细胞衰老过程中核膜和染色质互作的动态变化、染色质在细胞核中径向分布的大规模重排、染色质高级结构的重塑、精细的染色质状态的转变以及不同层次表观基因组信息的相互作用。研究人员发现衰老细胞的表观基因组呈现出染色质“刚性”的丢失和松弛性增加、表观基因组“熵”和混乱度的增加、“区室化”特征的减弱、全基因组表观信号的趋同性变化和“极性”的降低(激活性基因组区域和抑制性基因组区域表观特征丢失)等规律。研究人员将这种现象定义为“衰老中表观遗传景观的趋同性改变”,即“Convergent Alteration of the Epigenomic landscape during Aging”(CAEA),并首次提出胎盘、发育早期基因以及谱系非必要基因的表观“封印”解除和异位表达是人类细胞衰老的驱动力及分子标记物。
      通过对不同层次表观基因组重塑规律的深度解析和整合,该研究揭示了人干细胞衰老过程中表观遗传调控的三个核心特征:
      1) 对于抑制性基因组区域,细胞核“刚性框架”(核纤层结构)的丢失与异染色质的“腐蚀”、异染色质和核膜互作减弱、异染色质松弛、组成型异染色质修饰降低、DNA甲基化水平降低和染色质可及性的增加相关联。
      2)对于激活性基因组区域,则表现为激活型特征的丢失,具体包括:激活型组蛋白修饰减少、染色质环互作强度降低及染色质可及性降低。
      3)对于激活性和抑制性基因组区域的边界,发生了特征性的染色质区室“翻转”和“腐蚀”,具体表现为:边界处更易发生激活和抑制型区室的切换、兼性异染色质信号的丢失以及组成型异染色质和兼性异染色质的隔离“屏障”丢失以及相互入侵。
      通过不同层次表观基因组重塑和基因表达特征的整合分析,该研究还建立了衰老细胞中基因组结构性变化和转录表达失调的联系,发现衰老细胞的表观基因组“势能”维持力的降低同衰老伴随的转录失调密切相关,整体激活和抑制性表观遗传特征的丢失和表观基因组的趋同性变化激活了抑制性区域中的谱系/发育特异基因以及多种类型重复元件家族(如:LTR/ERVs等)的异常表达,同时沉默了激活性区域的关键年轻基因(如:细胞周期基因等)的表达。该研究还鉴定出对衰老敏感的表观基因组区域,发现表观基因组的特定拓扑结构和表观状态的改变(与核膜距离趋远、多维表观基因组的去抑制和再激活)会导致位于同一个LAD/TAD中的胎盘发育相关基因簇——妊娠特异性糖蛋白(PSG)的协同激活表达。进一步研究发现,衰老过程中胎盘基因的异位激活是细胞衰老的驱动因素,过表达PSG4(PSG家族成员)可以驱动人类干细胞的衰老。另外,该研究还发现PSG4在老年人血液中的表达丰度显著升高,从而提示PSG4可以作为评估人类机体衰老程度的全新分子标志物。
      该研究首次系统地描绘了人干细胞衰老的多层次表观基因组全景图,跨越多个表观基因组维度深入解析了细胞衰老过程中不同层次的表观基因组重塑规律及其与基因表达调控的密切联系。更为重要的是,该研究发现并确定了不同维度表观状态的协同变化所介导的胎盘相关基因PSG4的激活是机体衰老的新型分子标志物,指出了染色质三维结构紊乱所引起的早期发育基因的异常表达是人细胞衰老的驱动力。
      总的来说,该研究结合多种衰老模型,提出了细胞衰老的新型表观基因组跨维度变化模式和理论框架,发现了人类衰老的新型标志物和驱动因素。这些发现将为衰老的表观基因组研究提供新的见解,为理解衰老的基因表达调控和关键信号通路提供新的方向,并为开发预防和治疗衰老相关疾病的新型干预靶标提供有力指导。
      该研究由中国科学院动物研究所、中国科学院北京基因组研究所(国家生物信息中心)、首都医科大学宣武医院、北京医院、中国科学院上海生科院计算生物学研究所、华中农业大学等机构合作完成。干细胞与再生医学研究院刘光慧研究员、中国科学院北京基因组研究所张维绮研究员和中国科学院动物研究所曲静研究员为论文的共同通讯作者。中国科学院动物研究所博士研究生刘尊鹏、季乾昭,中国科学院北京基因组研究所任捷研究员,中国科学院动物研究所博士研究生颜鹏泽,中国科学院动物研究所特别研究助理武泽明和首都医科大学宣武医院王思研究员为论文的共同第一作者。该研究得到中国科学院动物研究所王红梅研究员、北京医院孙亮教授、华中农业大学曹罡教授以及中国科学院上海生科院计算生物学研究所魏刚研究员的指导与支持,并获得科技部、国家自然科学基金委、中国科学院和北京市等项目资助。
      原文链接:https://doi.org/10.1016/j.devcel.2022.05.004
      图1. 大规模表观基因组重塑引起的发育相关基因异常激活是人类干细胞衰老的驱动力

    2022-05-24
  • 焦建伟研究组揭示脑血管内皮细胞调控神经前体细胞命运决定的新机制

    焦建伟研究组揭示脑血管内皮细胞调控神经前体细胞命运决定的新机制

    2022年4月30日,干细胞与再生医学研究院焦建伟研究组在Advanced Science杂志上发表了题为Endothelial cells mediated by UCP2 control the neurogenic-to-astrogenic neural stem cells fate switch during brain development 的研究论文。这项工作揭示了脑血管内皮细胞在发育中的新皮质中调节神经前体细胞神经源性向胶质源性转变的作用机制。
          在哺乳动物新皮质发育过程中,神经前体细胞逐渐改变其特征和形态,依次形成神经元,星形胶质细胞和少突胶质细胞。顺序性分化是一种进化机制,神经元和胶质细胞的生成时间受到严格的调控。前期研究表明,神经系统的内外因素影响神经前体细胞神经源性向胶质源性转变。一个潜在的机制是神经前体细胞的内源因素,如神经前体细胞表面受体和转录因子。另一个潜在的机制是外源信号,如神经元分泌的因子。然而,除了神经系统以外,其他系统如血管是否影响神经前体细胞神经源性向胶质源性转变的机制仍然需要更加全面的研究。在神经前体细胞增殖和依次分化产生神经元和星形胶质细胞的同时,中枢神经系统变得血管化。由高特异性内皮细胞组成的脑血管系统作为神经前体细胞微环境的重要调节者,参与氧气和营养物质运输,监测细胞代谢等以维持正常的脑功能。然而,发育中的脑血管在调控神经前体细胞神经源性向胶质源性转变的机制尚不清楚。
      2022年4月30日,干细胞与再生医学研究院焦建伟研究组在Advanced Science杂志上发表了题为Endothelial cells mediated by UCP2 control the neurogenic-to-astrogenic neural stem cells fate switch during brain development 的研究论文。这项工作揭示了脑血管内皮细胞在发育中的新皮质中调节神经前体细胞神经源性向胶质源性转变的作用机制。
      线粒体是血管内皮细胞的信号细胞器,研究人员关注到内皮细胞中线粒体内膜分子UCP2。在这项研究中,他们发现随着发育的进行UCP2在血管内皮细胞中的表达水平逐渐升高。内皮细胞UCP2基因敲除导致内皮细胞代谢水平改变,减少血管直径。研究人员进一步发现,内皮细胞的紊乱导致神经前体细胞神经发生向胶质发生的过渡时间提前,最终导致神经元数目减少,星形胶质细胞数目增多。并且内皮细胞UCP2基因敲除导致小鼠出生后星形胶质细胞数目持续增加。研究人员进一步通过对脑血管内皮细胞进行RNA测序,发现糜蛋白酶 CMA1表达增强导致血管紧张素II (Ang II)分泌到内皮细胞外。内皮细胞来源的Ang II结合到神经前体受体(血管紧张素II 1a型受体,Agtr1a)进而激活JAK-STAT通路启动胶质发生。此外,抑制内皮细胞UCP2表达促进人神经前体细胞向星形胶质细胞分化,减少人神经前体细胞向神经元的分化。
      综上所述,这项研究揭示了大脑发育中血管分泌重要的调控因子影响神经前体细胞顺序分化的新机制,为神经细胞发生向星形胶质细胞发生过渡时间的精确性调控提供了更加全面的理解,并且可以帮助我们更全面的认识胚胎期大脑皮层发育的复杂性,将更好理解大脑发育的进程和基本规律,为神经系统疾病的诊断提供理论基础。
      中国科学院动物研究所焦建伟研究员为该论文的通讯作者,中国科学技术大学与中国科学院动物研究所联合培养博士研究生王稳稳和中国科学院动物研究所博士后苏立波为该论文的共同第一作者。该研究获得了国家科技部、国家自然科学基金委、中国科学院先导等项目的资助。
      原文链接:http://doi.org/10.1002/advs.202105208
      

    2022-04-30
  • 干细胞院合作揭示载脂蛋白APOE驱动干细胞衰老的新活性

    干细胞院合作揭示载脂蛋白APOE驱动干细胞衰老的新活性

    2022年3月28日,干细胞与再生医学研究院刘光慧研究组、曲静研究组、宋默识研究组和中国科学院北京基因组研究所张维绮研究组合作,在Nature Aging杂志在线发表了题为“Destabilizing heterochromatin by APOE mediates senescence”的研究论文。该研究首次报道了细胞核中定位的APOE可与核膜以及异染色质相关蛋白相互作用,促进核纤层及异染色质蛋白的自噬性降解,进而破坏核周异染色质稳定性,导致人类干细胞的衰老。
      载脂蛋白E(APOE)作为一种经典的脂质结合蛋白,可以与胆固醇或其他脂质结合形成脂蛋白颗粒,从而介导中枢神经系统和外周组织中的脂质转运。越来越多的证据表明,APOE基因多态性与阿尔茨海默病、血管动脉粥样硬化以及人类寿命调控密切相关。尽管APOE一直以来被认为是阿尔茨海默病等衰老相关退行疾病的关键易感基因,但其在衰老调控中的作用和机制尚不明确。
      2022年3月28日,干细胞与再生医学研究院刘光慧研究组、曲静研究组、宋默识研究组和中国科学院北京基因组研究所张维绮研究组合作,在Nature Aging杂志在线发表了题为“Destabilizing heterochromatin by APOE mediates senescence”的研究论文。该研究首次报道了细胞核中定位的APOE可与核膜以及异染色质相关蛋白相互作用,促进核纤层及异染色质蛋白的自噬性降解,进而破坏核周异染色质稳定性,导致人类干细胞的衰老。
      研究人员发现,APOE的蛋白水平在多种人类干细胞衰老模型中均发生上调,提示APOE与人干细胞衰老调控的潜在联系。进一步研究显示,过表达APOE能够加速人干细胞衰老,而CRISPR/Cas9介导的APOE敲除可以延缓人干细胞衰老,说明APOE的聚积是细胞衰老的新型驱动力。机制分析表明,细胞核内的APOE可与内层核膜蛋白LBR、Emerin以及异染色质蛋白KAP1形成蛋白复合物。APOE通过自噬-溶酶体途径促进核膜蛋白和异染色质组分的降解,破坏核周异染色质的稳定性,进而导致基因组重复序列的去抑制及异常高表达,驱动人干细胞衰老。研究人员还发现,在多种人类细胞模型中敲低APOE均能延缓细胞衰老,说明APOE可作为减轻衰老及衰老相关病理的潜在分子靶标。
      该研究首次揭示了APOE通过自噬-溶酶体途径破坏异染色质结构、加速细胞衰老的新型分子机制,拓展了人们对载脂蛋白APOE的新型生物学功能及机制的认知。考虑到APOE基因多态性与人类阿尔兹海默病等退行性疾病的密切联系,及其与长寿的关联,该研究将为衰老及衰老相关疾病的干预提供重要的线索和全新的思路。
      Nature Aging杂志同期配发News & Views,对该研究进行积极评价。
      该研究由中国科学院动物研究所、中国科学院干细胞与再生医学创新研究院、北京干细胞与再生医学研究院、中国科学院北京基因组研究所、首都医科大学宣武医院等机构合作完成。中国科学技术大学与中科院动物研究所联合培养博士研究生赵宏凯、中国科学院动物研究所博士研究生季乾昭、中国科学院特别研究助理武泽明以及首都医科大学宣武医院王思研究员为文章的并列第一作者。中国科学院动物研究所刘光慧研究员、曲静研究员、中国科学院北京基因组研究所张维绮研究员以及中国科学院动物研究所宋默识研究员为文章的共同通讯作者。该研究得到了中国科学院北京基因组研究所任捷研究员的指导和支持,同时获得了科技部、国家自然科学基金委、中国科学院及北京市等项目资助。
      原文及评述链接:
      https://www.nature.com/articles/s43587-022-00186-z
      https://www.nature.com/articles/s43587-022-00190-3
      

    2022-03-29
  • 干细胞院合作发现PCBP2调控cGAS-DNA相变的机制

    干细胞院合作发现PCBP2调控cGAS-DNA相变的机制

    2022年3月23日,干细胞与再生医学研究院孙钦秒实验室和云南大学的陈大华实验室合作在Nature Communications杂志在线发表了题为“PCBP2 maintains antiviral signaling homeostasis by regulating cGAS enzymatic activity via antagonizing its condensation” 的论文。该工作发现PCBP2通过在体内和体外抑制cGAS-DNA的相分离来降低cGAS的酶活,进而维持cGAS介导的天然免疫反应平衡。
      环状GMP-AMP合成酶(cGAS)作为一种细胞质内识别DNA的受体,在机体抗DNA病毒和细菌的天然免疫反应中发挥着重要的作用。cGAS结合DNA后,催化合成第二信使cGAMP。cGAMP进一步与定位于内质网的接头蛋白STING结合,分别通过TBK1和IKK复合体激活转录因子IRF3和NF-κB,诱导干扰素和炎症因子的产生。同时,由于cGAS识别DNA的非特异性,它也可以识别宿主体内自身的DNA。大量研究发现cGAS功能的异常与感染性疾病、自身免疫疾病、衰老以及肿瘤的发生等密切相关。因此,cGAS活性必须受到严格的精准调控。
      cGAS在体内和体外结合DNA后,都可以形成相分离,从而提高了cGAS的局部浓度,增强cGAS的酶活性,进而更有效地合成cGAMP。因此,cGAS-DNA相分离的动态调控对于其介导的信号通路的适时适量的启动和终止都是非常重要的。然而,目前对于cGAS-DNA的相分离的动态调控机制还不是很清楚。
      2022年3月23日,干细胞与再生医学研究院孙钦秒实验室和云南大学的陈大华实验室合作在Nature Communications杂志在线发表了题为“PCBP2 maintains antiviral signaling homeostasis by regulating cGAS enzymatic activity via antagonizing its condensation” 的论文。该工作发现PCBP2通过在体内和体外抑制cGAS-DNA的相分离来降低cGAS的酶活,进而维持cGAS介导的天然免疫反应平衡。
      研究人员为进一步解析cGAS的调控机制,首先通过免疫共沉淀实验结合质谱分析的方法,筛选到其中一个与cGAS有较强相互作用的蛋白PCBP2。通过功能分析,研究人员发现PCBP2过表达可明显减弱cGAS-STING的信号;而PCBP2的敲低或敲除可以显著增强DNA刺激或病毒感染后的天然免疫反应。在调控机制上,研究人员发现PCBP2在体外可以显著抑制cGAS-DNA的相分离和酶活。同时,在体内也观察到PCBP2的敲除显著增强cGAS的聚集,进而调控cGAS的酶活。这些研究结果不仅解析了cGAS介导的抗病毒免疫反应的调控机制,而且为以cGAS为靶点的感染性疾病、自身免疫疾病和癌症的治疗以及新药开发提供新的线索。
      孙钦秒研究员和陈大华教授为该论文的共同通讯作者。中国科学院动物研究所博士研究生顾海艳、硕士研究生杨静、博士研究生张嘉宇为该论文的共同第一作者。该研究获得了国家自然科学基金委和膜生物学国家重点实验室等项目的资助。
      文章链接:https://www.nature.com/articles/s41467-022-29266-9
      

    2022-03-22
  • 干细胞院合作揭示控制灵长类衰老的节律开关

    干细胞院合作揭示控制灵长类衰老的节律开关

    2022年3月15日,干细胞与再生医学研究院刘光慧研究组、中山大学项鹏研究组与干细胞与再生医学研究院曲静研究组合作在Nucleic Acids Research杂志在线发表题为“BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in primates”的研究论文。该研究通过CRISPR/Cas9介导的基因编辑技术产生了BMAL1缺失的人干细胞和非人灵长类研究模型,揭示了核心节律蛋白BMAL1具有维持基因组稳定性、抑制转座子LINE1活化,并拮抗灵长类组织和细胞衰老的新型功能。
          昼夜节律机制调节哺乳动物的睡眠-觉醒周期、新陈代谢、免疫功能和繁殖等生理活动与外界24小时昼夜循环相协同,从而维持机体组织和细胞生理活动的动态平衡。节律紊乱通常被认为是机体加速衰老的重要诱因。然而,核心节律机制如何调控灵长类的衰老仍知之甚少。
      2022年3月15日,干细胞与再生医学研究院刘光慧研究组、中山大学项鹏研究组与干细胞与再生医学研究院曲静研究组合作在Nucleic Acids Research杂志在线发表题为“BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in primates”的研究论文。该研究通过CRISPR/Cas9介导的基因编辑技术产生了BMAL1缺失的人干细胞和非人灵长类研究模型,揭示了核心节律蛋白BMAL1具有维持基因组稳定性、抑制转座子LINE1活化,并拮抗灵长类组织和细胞衰老的新型功能。
      BMAL1是生物钟最核心的组分之一,它作为转录因子在维持细胞分子生物钟和个体节律方面发挥着重要作用。迄今为止,BMAL1蛋白在灵长类细胞稳态及衰老中的调控作用尚不明确。在该研究中,研究人员发现人和猴细胞衰老过程中BMAL1逐渐从细胞核中排空,提示BMAL1可能与细胞衰老的基因表达调控相关。为研究BMAL1对灵长类细胞衰老的调控功能,研究人员结合CRISPR/Cas9介导的基因编辑技术和干细胞定向分化技术获得了BMAL1敲除的人间充质干细胞,进而发现BMAL1蛋白的缺失引起人间充质干细胞的加速衰老。虽然BMAL1依赖于其转录活性参与节律调节,但野生型BMAL1及其转录活性丧失的突变体均可抑制BMAL1缺失所致人间充质干细胞加速衰老,说明BMAL1对衰老的调控不依赖于经典的转录功能。深入的机制研究发现,BMAL1与核纤层及异染色质蛋白结合,有助于维持异染色质的结构稳定性,进而抑制“跳跃基因”LINE1的活化。BMAL1的缺乏导致LINE1等“核酸垃圾”在胞浆内表达和聚集,进而诱导下游cGAS-STING天然免疫通路的激活,加速干细胞衰老。反转录酶抑制剂拉米夫定(Lamivudine)处理可有效抑制BMAL1缺失引起的细胞加速衰老。同时,研究人员发现BMAL1缺失的猴间充质干细胞以及组织中也存在LINE1及cGAS-STING通路的激活,说明BMAL1抑制“垃圾核酸”积聚、稳定天然免疫通路的新功能在人和非人灵长类中保守。
      该项研究首次揭示了核心节律蛋白抑制LINE1-cGAS-STING通路进而调控灵长类衰老的新功能及新机制。这一研究成果拓展了人们对核心节律蛋白生物学功能的认识,建立了昼夜节律和衰老调控的科学联系,为延缓灵长类衰老提供了新的分子靶标,同时为防治衰老相关疾病开拓了新的思路。
      该研究工作由中国科学院动物研究所、中山大学中山医学院、中国科学院北京基因组研究所、首都医科大学宣武医院、北京干细胞与再生医学研究院、北京协和医院、香港中文大学医学院等多家机构合作完成。中国科学院动物研究所博士研究生梁楚倩、中山大学柯琼副教授、中国科学院动物研究所博士研究生刘尊鹏、中国科学院北京基因组研究所任捷研究员和张维绮研究员为并列第一作者。中国科学院动物研究所刘光慧研究员、中山大学项鹏教授和中国科学院动物研究所曲静研究员为文章的共同通讯作者。该研究得到了王华婷教授、孙昊教授和龙笑教授的支持,并获得科技部、国家自然科学基金委、中国科学院及北京市等项目的资助。
      图:衰老伴随的BMAL1核内利用度降低导致LINE1激活,进而加速细胞衰老。
      原文链接:https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkac146/6548307?login=true
      

    2022-03-15
  • 干细胞院合作解析人类胚胎不同脑区小胶质细胞发育

    干细胞院合作解析人类胚胎不同脑区小胶质细胞发育

    2022年3月3日,干细胞与再生医学研究院焦建伟研究组、北京大学杜鹏研究组、干细胞与再生医学研究院王雁玲研究组、北京大学靳蕾研究组合作在Cell Stem Cell 杂志在线发表了题为Decoding the Temporal and Regional Specification of Microglia in the Developing Human Brain的研究论文。该研究首次解析了人脑发育中不同区域的小胶质细胞单细胞转录组,精准揭示了发育中人脑小胶质细胞区域特化和状态转换的时空动力学特征,并通过比较小鼠和人类皮层小胶质细胞转录组差异,评估了这两个物种之间状态转换的保守性和分子差异性。
      作为中枢神经系统(Central Nervous System,CNS)的固有免疫细胞,小胶质细胞(Microglia)在健康CNS中发挥着重要的免疫、监测和保护作用。有证据表明,小胶质细胞来源于卵黄囊组织中的红髓系前体细胞,它们迁移、定植、分化,并在大脑中成熟,最终达到稳定状态,维持中枢神经系统环境的免疫平衡。与成年成熟的小胶质细胞相比,胚胎期小胶质细胞表现出很大的异质性,并参与各种生理活动的调节。中枢神经系统由脑和脊髓组成,脑主要区域包含大脑皮层、间脑、中脑和小脑。但是,起源于卵黄囊组织中红髓系前体细胞的小胶质细胞在四个脑区的发育路径和不同状态转换,以及它们的相关功能特征尚不清楚。
      近年来,快速发展的单细胞组学技术,为理解细胞命运决定和细胞异质性提供了强有力的工具。之前对小鼠的单细胞测序研究结果显示,小胶质细胞具有高度异质性。然而,人类和小鼠之间的物种差异极大地限制了我们对人类小胶质细胞分化和发育功能的理解,尤其是在早期胚胎发育期间。此外,迄今为止,人类单细胞测序研究仅研究了小胶质细胞的早期起源,从卵黄囊到大脑进入前,或整个CNS中小胶质细胞的发育,对于人脑早期发育过程中小胶质细胞的区域特化命运决定和状态转换并不清楚。
      2022年3月3日,干细胞与再生医学研究院焦建伟研究组、北京大学杜鹏研究组、干细胞与再生医学研究院王雁玲研究组、北京大学靳蕾研究组合作在Cell Stem Cell 杂志在线发表了题为Decoding the Temporal and Regional Specification of Microglia in the Developing Human Brain的研究论文。该研究首次解析了人脑发育中不同区域的小胶质细胞单细胞转录组,精准揭示了发育中人脑小胶质细胞区域特化和状态转换的时空动力学特征,并通过比较小鼠和人类皮层小胶质细胞转录组差异,评估了这两个物种之间状态转换的保守性和分子差异性。
      利用10x Genomics单细胞测序技术,作者绘制了来自人类胚胎,包括Carnegie Stage (CS)12卵黄囊和头部组织以及脑的不同解剖位置,包括大脑、间脑、中脑、小脑在多个孕周(gastrulation week,GW)(GW8、GW10、GW12、GW16和GW23)的单细胞转录组图谱。在进行质量控制和生物信息学聚类分析后,作者选择CD45+CD33+髓系细胞(共12565个细胞)进行分析。基于已知标记基因,该项研究识别了20个小胶质细胞亚群,并揭示上述群体的发育动力学特征。同时,根据基因表达特征将这些亚群分成了起源、增殖、免疫应答和神经元基因富集相关四大类。为了可视化和重塑来自CS12同一群原始髓系前体细胞的神经元基因富集小胶质细胞和免疫相关小胶质细胞的细胞命运决定轨迹,作者使用Monocle2和URD进行伪时间分析。有趣的是,两种分析方法均显示出类似的结果:源自CS12卵黄囊和头部的小胶质祖细胞首先启动细胞增殖,在不同的细胞周期阶段成为增殖的小胶质细胞,然后这些增殖的小胶质细胞向两种不同的细胞命运过渡:免疫或神经元基因富集特征。对于免疫相关的发育分枝,小胶质细胞通过一个共同的中间阶段,最终在GW23达到区域特化。然而,具有不同区域特征的神经元基因富集小胶质细胞可以直接从循环小胶质细胞而来。这是首次揭示了人胚胎脑神经元基因富集的小胶质细胞命运分枝。在这项研究中,作者鉴定出7群富含神经元基因的小胶质细胞,发现均瞬时出现在包括大脑、间脑、中脑和小脑的四个不同区域,且早在GW8(CNS区域形成的时期)时就在早期脑发育的不同阶段出现。稳态指小胶质细胞的一种静息状态,脱离静息状态会导致多种免疫应答反应的激活。在此,作者分析了胎儿小胶质细胞的区域特异性和状态转换之间的潜在联系。此研究首次提出免疫相关小胶质细胞的区域特化会伴随小胶质细胞静息状态的退出。接下来,作者进一步探究了GW23区域特化胎儿小胶质细胞的不同免疫激活状态。上述研究结果概述了具有区域特异性的免疫相关小胶质细胞的胎儿激活的独特特征,这与之前报道的所有成人成熟小胶质细胞明显不同。进一步,作者比较了人类和小鼠的小胶质细胞静息状态转变发现胎儿小胶质细胞的动态静息/活动状态转换在人类和小鼠中是保守的。将人鼠小胶质细胞拟合后,作者发现大多数其他细胞类型可以合并在一起,表明人类和小鼠的几种细胞类型和发育途径是保守的。此外,通过分析差异表达基因,发现人和小鼠小胶质细胞的分子特征存在一些差异。
      综上所述,这项研究揭示了人类胚胎小胶质细胞从卵黄囊到脑不同区域的整体发育路径、区域异质性、胎儿小胶质细胞状态转变的独特特征,以及早期大脑发育期间状态转变和区域特异性之间的密切联系,这些发现将为研究小胶质细胞正常功能及相关疾病机理研究提供重要的理论基础。
      焦建伟、杜鹏、王雁玲和靳蕾为该论文的共同通讯作者。博士后李妍昕、博士后李忠秋、博士研究生杨敏、博士后王飞扬、张玥红主任医师、李蓉主任医师为该论文的共同第一作者。滕兆乾研究团队参与了项目协作。该研究获得了国家科技部、国家自然科学基金委、中国科学院先导等项目的资助。
      文章链接:https://doi.org/10.1016/j.stem.2022.02.004
      

    2022-03-03
  • 干细胞院合作发现促进多组织再生、延缓衰老的小分子代谢物

    干细胞院合作发现促进多组织再生、延缓衰老的小分子代谢物

    2022年2月1日,干细胞与再生医学研究院刘光慧研究组、曲静研究组和中国科学院北京基因组研究所张维绮研究组合作,于Cell Discovery杂志在线发表题为“Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor”的研究论文。该研究深度解析了跨物种、跨年龄、跨组织的代谢分子特征,解码了与较高再生能力密切相关的代谢调节通路,鉴定了一系列能改够延缓人类干细胞衰老、促进多组织再生的关键通路和小分子代谢物,为衰老的科学评估、衰老相关疾病的防治以及再生医学的发展提供了潜在的分子标记物和干预策略。
      再生是机体修复受损、病变或衰老组织的重要过程。从低等动物到人类,不同物种具有不同程度的再生能力,并且这种能力随着物种的不断进化而逐步降低。例如,低等动物中的蝾螈能够实现断肢的完全再生,而包括人类在内的大多数哺乳动物仅具备有限的再生和损伤修复能力。在哺乳动物中,鹿角是唯一能够完全再生的器官。尽管高度进化的物种能在组织损伤时启动相应的再生修复程序,但这种再生修复的能力会随着年龄的增长而逐渐降低。众所周知,干细胞在组织再生和修复的过程中发挥着关键作用。例如,蝾螈可以通过形成芽基组织(一群去分化的具有干性的细胞)来完成肢体的再生。同样地,在每年的鹿角再生过程中,位于鹿角骨膜的鹿茸干细胞可以分化产生包含血管、软骨、骨、真皮和神经在内的完整鹿角器官。人类成体干细胞,如间充质干细胞,在多种组织和器官的再生修复过程中均起到关键作用,但是这些干细胞的数量和再生能力同样会随着机体年龄的增加而降低。
      虽然人们已经发现机体再生能力随进化和衰老而逐步丧失的规律,但其中的分子机制尚不明确。内源性小分子代谢物在不同物种间相对保守;然而,迄今为止,人们对能够调节衰老和再生的小分子代谢物还知之甚少。通过向自然界存在的低等动物的再生过程学习、以及向具有较强再生能力的年轻组织和干细胞学习,理论上有望发现跨物种保守的、调节再生和衰老的关键代谢小分子,从而将为解码再生的代谢调控机制,发现促进再生、延缓衰老的关键代谢物提供新的线索和思路。
      2022年2月1日,干细胞与再生医学研究院刘光慧研究组、曲静研究组和中国科学院北京基因组研究所张维绮研究组合作,于Cell Discovery杂志在线发表题为“Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor”的研究论文。该研究深度解析了跨物种、跨年龄、跨组织的代谢分子特征,解码了与较高再生能力密切相关的代谢调节通路,鉴定了一系列能改够延缓人类干细胞衰老、促进多组织再生的关键通路和小分子代谢物,为衰老的科学评估、衰老相关疾病的防治以及再生医学的发展提供了潜在的分子标记物和干预策略。
      该研究通过跨物种、跨年龄、跨组织地绘制多种细胞类型的代谢图谱,其中包括:蝾螈断肢再生的芽基、鹿茸干细胞、年轻和年老食蟹猴的多种组织(脑、心脏、肝脏、肌肉、肾脏、脂肪、皮肤、血液)以及年轻和衰老的间充质干细胞,系统揭示了一些跨物种保守的、再生相关的代谢通路。例如,再生能力强的生物样本更倾向于富集多胺代谢、尿嘧啶代谢和脂肪酸代谢通路。进一步结合人类干细胞衰老的研究平台,研究人员对潜在的促再生代谢物进行了细致的筛选,发现小分子代谢物尿苷(Uridine)可以明显提升衰老人间充质干细胞的自我更新能力。进一步研究表明,尿苷处理可以在5种小鼠的组织损伤模型(肌肉损伤模型、肝纤维化模型、毛发再生模型、心肌梗塞模型和关节炎模型)中助力损伤或病变组织的再生修复。在肌肉损伤模型中,尿苷有效提升了肌肉的再生修复能力、缓解了肌肉损伤引起的炎症反应,同时增强了小鼠的肢体抓力和系统运动能力;在肝脏纤维化模型中,尿苷缓解了四氯化碳诱导的肝纤维化,有效改善了肝功能的多个生理指标;在毛发再生模型中,尿苷处理可以刺激毛囊提前进入生长期,从而促进毛发的生长;在心肌梗塞模型中,尿苷能有效缓解急性炎症、提升损伤心脏的收缩能力;在关节炎模型中,尿苷可以促进关节软骨再生、提升小鼠的关节运动能力。以上结果表明,单一代谢物尿苷能够促进哺乳动物多器官组织的再生修复过程。与年轻个体具有较强的再生能力一致,年轻人血液中具有比老年人更高的尿苷含量。接下来,研究人员进一步探究了尿苷处理是否可以增强老年个体的生理机能。结果发现,两个月的口服尿苷处理可以增强老年小鼠(22月龄)的生理机能,表现为肢体抓力和运动能力的显著提升。这些发现从多个层面证实了尿苷具有抑制人类干细胞衰老、促进多组织再生修复、提高老年个体生理机能的潜在活性。
      该研究首次绘制了跨物种、跨年龄以及跨组织细胞的内源性代谢物的全景图谱,系统解析了强再生能力所伴随的分子代谢通路。更为重要的是,该研究发现尿苷是一种能延缓人类干细胞衰老、促进哺乳动物多组织再生修复的关键代谢物。这些发现为深入认识机体损伤或病理修复的机制奠定了理论基础,并为提升老年群体的健康、预防和治疗衰老相关疾病提供新的策略。
      该研究的相关数据已同时上传至衰老多组学数据库Aging Atlas (AA, https://bigd.big.ac.cn/aging/index) 和再生多组学数据库Regeneration Roadmap (RR, https://ngdc.cncb.ac.cn/aging/index)。
      该研究由中国科学院动物研究所、北京干细胞与再生医学研究院、首都医科大学宣武医院、中国科学院北京基因组研究所(国家生物信息中心)、北京医院、北京大学第三医院等机构合作完成。中国科学院动物研究所刘光慧研究员、曲静研究员、中国科学院北京基因组研究所张维绮研究员为论文的共同通讯作者。中国科学院动物研究所博士研究生刘尊鹏、首都医科大学宣武医院助理研究员李维和副研究员耿令令、北京医院孙亮教授、中国科学院北京基因组所博士研究生王俏然以及北京大学第三医院于洋教授为论文的共同第一作者。该研究得到了北京大学韩敬东教授、中国科学院北京基因组研究所任捷研究员、中国科学院动物研究所宋默识研究员和黄仕强研究员、首都医科大学宣武医院王思研究员和长春科技学院李春义教授的指导与支持,同时获得了国家科技部、国家自然科学基金委、中国科学院及北京市等项目的资助。
      原文链接:https://www.nature.com/articles/s41421-021-00361-3
      附图:通过跨物种和跨年龄的代谢组分析鉴定促进多组织修复、延缓衰老的关键代谢小分子。
      

    2022-02-02